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Magnetic field

- Charge generates electric and magnetic fields according to their P
motion. V-E= 5
- Still charge — electric field; moving charge — electric field and magnetic
field; accelerated charge — electromagnetic field. V-B=0
- Sensors of magnetic fields are used for direct evaluation of
magnetic fields 0B
- Terrestrial magnetic field (compass), biomagnetism,.. VxE= _g
- Orfor indirect measurements 9E
- E.g. position sensors VxB= pg,] + FGSUE

Magnetic fields sensors are based:
On the interaction with charges in motion (electric current)
Hall effect, magnetoresistors, magnetodiodes, MagFET...
On the interaction with electron spin
Anisotropy Magneto-Resistances, Giant Magneto-Resistance
On the interaction between magnetic fields
Fluxgate magnetometers
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Magneticfield
measurement units and typical values

MKS CGS
Induced magnetic field B Tesla[V s m?] Gauss [1 T=104G]
Magnetic field H Ampere per metro [A/m] Oersted [10e=79A/m]

u=u, - u, magnetic permeability

B=u-H )
H wy = 4107 LS

m-A

Practical unit: gamma 1y =10°G =10"T

Terrestrial magnetic field =05G

Magnetic field at 1 cm from a conductor =02G
carrying a current of 1A

Heart magnetic field =106 G =01y

Brain magnetic field =100 G =10 py
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Main applications

Compass for navigation

Beartn~50 uT

Position sensors
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Hall effect

In a current-carrying conductor the Lorentz force is
balanced by a transversal electric field created by the
charges displacement (Hall electric Field).

Positive charge carriers Negative charge carriers
FL=+q(+\7)x1§ F, =-q(-vV)xB

q'EH=q'V°B3EH=V°B B _q'EH=Q'V'B=>EH=—v-B

The direction of the Hall electric Field depends on the sign of the charge carriers.
Discrimination between N and P type semiconductors.
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Hall effect based magnetic sensor

- The voltage drop across the section of the conductor is proportional to the magnetic field.

_ A: cross-section of the conductor A=w t
/I ‘ B n: charge carriers concentration
g: elementary charge
1

_. 1
( Vy l w 1
—_ > q.nA q'n'W't

¥
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I=qvnA=v=

\/’ t 1 Vy=w-E,=w-v-B

I
VH=W’;‘B=>VH= ! ‘B
g n-w-t qg-n-t
1 Vi -t

Hall coefficient: Ry = — = ——
H qn I-B

Sensitivity is inversely proportional to the carriers concentration and to the thickness of the conductor.
The largest sensitivity is achieved by semiconductor thin films.
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Hall effectin metals and semiconductors

Numerical examples

metal ¢=0.2mm
n=85x10% m>
I1=1A
1 1

- .37ﬂ

Si = n T TBx10 85107 2x10"
Doped semiconductor ¢ =0.2 mm
n=1x10"m™
I=10mA
1 107

- T

S = =
" gonr 16x107°-1x10%-2x10™

—031 Y
T

- Typical sensitivities are of the order of 100 V/A*T but
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Hall probe

- The hall probe is a thin semiconductor with four

orthogonal contacts.

It can be fabricated either as a thin film on a insulating
substrate or as an implanted layer on a semiconductor
wafer.

Doping is light because the sensitivity is inversely
proportional to the carriers concentrations

Most used materials are InSb, InAs, GaAs, Si, and Ge.
Composite semiconductors are characterized by a

large mobility, but silicon is preferred for integrated
Sensors.

up to1000 V/A*T can be achieved.
Resolution can be of the order of 10 mG.

Size effect.
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« Iflis too short, the charges reach the electrode 1'—
with a small deflection and then the electric field is @B B =
not in equilibrium with the Lorentz force. I w Vi
| B=0
» Toconsider this effecta geometrical factor is
introduced (G<1) proportional to I/w. In pratice, 1

G=1when >3 w.
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Honeywell 91SS12

Product Specifications
Product Type Hall-Effect Linear Position Sensor
Package Type Ceramic SIP
Supply Voltage 8.0 Vdc to 16.0 Vdc
Output Type Source
Termination Type PC Board

Magnetic Actuation Type
Operating Temperature

Ratiometric Linear
-40 °C to 150 °C [-40 °F to 302 °F]

Output Voltage 6.0 Vdc + 0.6 Vdc @ 12 Vdc
Linearity (% of Span) +1.5% max.

Temperature Error +0.05% (Null Shift)
Availability Global

Supply Current 19 mA

Output Current (max.) 10 mA

Sensitivity 75mV£02mVIG
Response Time 3 ms (typ.)

Series Name 9188

Magnetic Range

-40 mT to 40 mT [-400 G to 400 G] min.

Output Voltage Span 6.0 Vdc @ 12 Vdc (typ.)
2 |
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g
vin Vout o
3
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Wattmeter with a Hall sensor

- Hall sensors can enable the product of currents and voltages.
For instance, Hall sensors can be used to measure the power of a a.c. signal

P=V*I V| provides the current to the sensor and |, generates the magnetic field

]
Lnlﬂi: B=w Ng-l;
/| Ha device V|_
Vi = Vongn Iy =—t—
proportional fo power RC+RS
Voltmeder
Powor  Calbraled in
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Py M xCos
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Magnetoresistance

B#0
IH- —
B=0
- Electric resistance is proportional to the path travelled by
the charges.
- The magnetic field deflects the trajectories of the charges @B
and then it increases the electric resistance. j
- The effect is more intense if the Lorentz force is not —
equilibrated by the Hall electric field. This happens in I | 5
conductors where the length is almost 3 times smaller j
than the width (I<3 w). ]
- To maximize the effects subtle layers of conductors are —
sandwiched between metallic conductors.
® @
- ID d
il Radl ad ad Fad Rl High conductivity
: : : v « v Low conductivity
w Ed S d g ”,’ e ",’ !
g PP P g B g IRt g Bt g
il ;' andl Sad Sad Ead Corbino disk: the circular structure avoids the
-~ pInsb kﬁrgs:n formation of the Hall electric field.
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Interaction with electronic spin
Anisotropic MagnetoResistance (AMR)

- In ferromagnetic materials the probability of charge scattering, and then the resistivity, is a function
of the angle between the current vector (J) and the magnetic field (B).

p(¥)=p, +Ap-sin® ¢

- The AMR is formed by a thin film with a ordered magnetization vector (By).
- The internal magnetic field sums with an external magnetic field. This results in a change of the

resistance. Ap is of the order of 1%.

Bo
B’=uH
[ p(®)=p,+dp-sin’ 0 '["sensitivity dP(9) _ p p-26w9-cos9
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Barber pole AMR

- The sensitivity is maximum when the current direction is _////// s—
145° with respect to the magnetization direction. - Pemiabey

- Permalloy (80% Ni, 20% Fe) ferromagnetic material. dhoring Bare
- Metallic shorting bar redirects the current at 45°C.

- Changing the direction of the shorting bars the sign of
the sensitivity is changed. So a sensor with positive and
negative sensitivities can be designed.

- This feature is exploited in a full Wheatstone bridge.

Voutt
current  Permalioy shorting bars
v+ p(8)=p(%)-(9-1)  p(9)=p(8)+(- V-
Ro(1+0)2 1N R, (1-9)
p(9)=p(0,)+(0-1, P(8)=p(Fg)5 (9 -,)
easy axis X ; Vi 0
Y ' A

Ro(1+0)N3 4R, (1+8) O=
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Giant MagnetoResistance (GMR)

- Itis observed in structures formed by two
ferromagnetic materials separated by a ultrathin M_" B SCATTRAN
(<1nm) non magnetic layer. — LOW RESISTANCE

- The electric resistance strongly depends on the

magnetic dipoles orientation of the two ferromagnetic R/ Riu=0)

materials. 10
- The application of an external magnetic field to one

of the ferromagnetic switches the magnetic moment (Fe 3om

changing the resistance.
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. Full History Disk Areal Density Trend
Hard disks =
o T
- GMR allows for the miniaturization of 1 x z
magnetic sensors. For instance, for the 1 \}*" .
. . . . £ o\ 4 0-100% CAGR
& 01 .4
compression of bit area in hard disks. 1 o Y§§° e
o] ,3,’. % CAGR
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Electromagnetic induction

A variable magnetic fields
induces a current in a coil

ddp
AV =——=
_ N " dt
entering Iéaving (I)B _ / B.dl
D
Current (a.c.) clamp
Variable B is generated by a a.c. current
3

e magnetic field

electical signal

magnet
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Fluxgate magnetometer

H=n-1
- Two core coils oppositely folded are B=pu,-(1+x)-H
surrounded by a larger single coil (Sense
coil).
- The current applied to the core coils induces /
two opposite fields that cancel each other. 7 H
- In presence of an external magnetic field,
the equilibrium is broken and the net
magnetic field inside the larger coil induces
a current in the sense coil.
- Fluxgates achieves resolutions of the order
of 10 G (100 times better than Hall » Core
sensors). Sensitive (3
axis
— ) S
1 Sense
— ] coil
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Fields, fluxes and voltages

For sake of simplicity, let us suppose a linear hysteres

H..= Hext:HO O A
ext™
B A B A
> 1
Sol 2 — Sol 2
‘Ho +H0
> H > H
Vout o
— —Sol1 L N—sol1
s »
q> A
1 >t ™




