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Generation and Recombination processes

4.1 Introduction

The concentrations of mobile charges (electrons and holes) in semiconductors are governed by
statistical laws that provide their equilibrium average values. Equilibrium means that the

average values are maintained by a continuous fluctuations of mobile charges that are subject to
creation and annihilation phenomena. Such events, at least involve the transition from states in the
conductance band, the valence band and the doping atoms energy levels.
These processes, called generation and recombination, are of outmost importance for the properties
of the devices. They operate in order to maintain the equilibrium condition, represented by the law
mass action, when additional charges are injected in a volume of the material.
The generation of electrons in the conduction band and holes in the valence band occurs in intrinsic
and doped semiconductors with an important difference: in intrinsic semiconductor electrons and
holes are generated together, while in doped semiconductors to the generation of holes and electrons
corresponds the generation of a fixed counter charge. It is straightforward that the process of
generation is reversible and then electrons and holes can recombine together in both intrinsic and
doped materials.
Then, the density of charges in a volume may change as a consequence of both the current and
the generation and recombination events. Then total variation of charges in a material volume is
described by the continuity equation that is a useful tool to determine the charges balance.

4.2 The continuity equation

Let us consider a volume of a semiconductor extended from x to x+dx and with a section of area A.
A current (e.g. of electrons) Jn(x) is injected in the volume through the area A at the coordinate x,
and a current Jn(x+ dx) leaves the volume at the coordinate x+dx. Inside the volume, generation
and recombination phenomena may also occur at rates Gn and Rn respectively. The continuity
equation describes the time behaviour of the total amount of charges (N) inside the volume. This
is defined as:

N =
∂n

∂t
·Adx (4.1)
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Fig. 4.1. Charge balance in a volume of material. Due to the current the charges can enter and leave the
volume, furthermore they can be generated and recombined.

in case of electrons, the balance of charges can be written as:

∂n

∂t
Adx =

Jn(x)

−q A− Jn(x+ dx)

−q A+GnAdx−RnAdx (4.2)

After replacing Jn(x+ dx)− Jn(x) = ∂Jn
∂x dx, the equation is normalised by Adx so it does not

depend on the volume. Thus the continuity equation for electrons is:

∂n

∂t
=

1

q

∂Jn
∂x

+ (Gn −Rn) (4.3)

symmetrically, the continuity equation for holes is:

∂p

∂t
= −1

q

∂Jp
∂x

+ (Gp −Rp) (4.4)

These formulas can be further expanded replacing the current that, in a semiconductor, is the
sum of drift and diffusion currents. For electrons: Jn = qµnnE + qDn

dn
dx then the explicit form of

the continuity equation is:

∂n

∂t
= µnn

∂E
∂x

+ µnE
∂n

∂x
+Dn

∂2n

∂x2
+ (Gn −Rn) (4.5)

while for holes:

∂p

∂t
= −µpp

∂E
∂x
− µpE

∂p

∂x
+Dn

∂2p

∂x2
+ (Gp −Rp) (4.6)

The previous set of equations describes the continuity of the charges when the mobility and the
diffusion coefficient are constant. It is worth to remind that this is the case of a uniformly doped
material. A typical situation is the steady state condition that corresponds to the time invariant
concentration of charges (∂n∂t = 0).

Corrado DI Natale 
Introduction to Electronic Devices: Part 2



DRAFT

4.3 Generation and recombination phenomena 79

4.3 Generation and recombination phenomena

The generation and the recombination of mobile charges are peculiar phenomena in semiconduc-
tors. These processes are manifested as the production of a pair of mobile charges (generation) or
their disappearance (recombination). Ultimately, this implies the transition of charges between the
valence and the conductance band.
The main action of generation and recombination processes is to restore the equilibrium, namely
the action mass law. The equilibrium condition is perturbed anytime the charges are altered by
an external cause. Typical cases are the illumination with a flux of photons and the injection or
extraction of a current from or to a nearby volume of the material.
The transition of an electron from the valence to the conduction bands requires an amount of energy
at least equal to the energy band gap but in some cases also a change of the momentum . The change
of momentum is not relevant in those materials where the top of the valence band coincides, in the
k space, with the bottom of the conduction band. Otherwise, when the maximum and minimum
of the two bands are not coincident in the space k, the transition requires a momentum change
(∆k 6= 0).
∆k = 0 is the case of direct band-gap which is found in semiconductors formed by III-V elements
of the periodic table such as Gallium Arsenide (GaAs) or Aluminium Arsenide (AlAs). ∆k 6= 0
is the case of an indirect band gap typical for semiconductors of the IV group such as silicon and
germanium.
The probability of events where energy and momentum simultaneously change is small. The varia-
tion of energy and momentum requires a sort of a three bodies interaction. In practice the additional
momentum necessary for the transition is provided by the lattice vibration. Lattice vibrations in
crystals are represented as quasi-particles called phonons which are endowed with energy and mo-
mentum.
The small probability indicates that transitions from one band to the other occur at a slow rate,
then they are not efficient to maintain the equilibrium in case of fast events such as the illumination
with a pulse of light. In these materials the generation and recombination actually occur with the
assistance of impurity states located in the band gap.
Doping is a typical source of states in the band gap. Doping states are close to the respective
band according to the character of the dopant: either acceptor or donor. Besides dopants, that are
intentionally added, a number of naturally occurring impurities are also found in the crystal, they
may introduce additional electron energy states in the band gap. Thus the energy gap is not totally
forbidden.
Inter gap states may be found at any energy level, an example of them are the surface states. In
the bulk of the material the density of inter gap states is smaller respect to the surface but it is not
negligible. It is important to consider that defects in real materials are inevitable, then a density of
states inside the band gap always exists even in intrinsic semiconductors.
In the rest of this section the generation and recombination phenomena driven by inter gap states
are discussed.

4.3.1 Generation and recombination rates

In order to derive a quantitative description of generation and recombination, let us consider a
semiconductor characterized by a density of inter gap states (NT ) at the same energy (ET ). These
states are spatially localized and they are the manifestation of the defects of the material (impuri-
ties or lattice defects). In acceptable materials, the defects are so sparse that their states are non

Corrado DI Natale 
Introduction to Electronic Devices: Part 2



DRAFT

80 4 Generation and Recombination processes

interacting. Then, like the doping states, even the defect states do not degenerate into bands.
The interaction of the defect states with the electrons of the conduction band and the holes of the
valence band is detailed by four different processes.
Each process is described by the rate of occurrence whose dimensions are events

time cm3 :
r1: capture of electrons;
r2: emission of electrons;
r3: capture of holes;
r4: emission of holes.

e
n
e
rg
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Ei

ET

r1 r2

r3 r4

Fig. 4.2. Arrangement of the defect states at the energy level ET inside the band gap. The four processes
of capture and emission of electrons and holes are shown.

Let us calculate the rate of capture and emission in the case of electrons. The same procedure
holds to determine the rates of the processes involving the holes.

The rate of capture

Since the defects are spatially localized, the capture may occur only after the physical encounter of
an electron with the defect. Given a volume of material let us consider a flux of electrons impinging
into the volume. The rate of captured electrons is the product of the flux of incoming electrons
times the density of empty capture states times the intrinsic capability that a state can capture an
electron. This last quantity (indicated as σ) can be considered as the affinity between the electron
and the defect, and it depends on the nature of the defect itself.

r1 = F ·NT (1− fFD(ET )) · σn (4.7)

The flux of electrons is the total current, however since the thermal velocity is much greater than
the velocity of electrons due to drift and diffusion, the amount of flux of electrons onto a surface
inside the material is due to the thermal current. Indeed, at microscopic level and even under either
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an electric field or a concentration gradient, the instantaneous speed of the electrons is the thermal
velocity. The flux of electrons impinging onto a plane is calculated by the classical kinetic theory of
gas where the flux is proportional to the thermal velocity according to the Knudsen law : F = 1

4vthn
where n is the density of electrons. The average thermal velocity vth is calculated from the Maxwell

distribution of velocity vth =
√

8kT
πm∗ .

The density of empty capture states is the total density of capture states times the probability that
they are not occupied by electrons. This probability is the complementary Fermi-Dirac function at
the energy of the states: NT,empty = NT (1− fFD(ET )). Thus, the rate of capture of electrons is:

r1 =
1

4
vthn · σn ·NT (1− fFD(ET )) (4.8)

The quantity σn is the affinity between the impurity and the electron. It is called the cross-
section of capture and it has the dimension of an area. Sometimes σn is described as a sort of the
equivalent area of a target, then largest is the area easiest is the capture. Anyway, it defines the
occurrence of the capture event without any relation with the actual area of the defect. σn of gold
atoms, a typical capture state in silicon, is of the order of 10−15cm2. Beryllium has the largest cross
section of capture in silicon σn = 10−10cm2 . The density of defects, always in silicon, is of the
order of 10−15 cm−3.

The rate of emission

The emission is the release, back to the conduction band, of previously captured electrons. The rate
of emission is simply proportional to the density of electrons in the capture states times the intrinsic
probability of emission. Differently from the previous case, since the conduction band has a very
large density of free states the density of states at destination is irrelevant. The density of filled
capture states is given by the Fermi-Dirac function: NT,fill = NT fFD(ET ). The rate of emission of
electrons is:

r2 = NT fFD(ET ) · en (4.9)

Where en is the intrinsic probability of emission. It has the dimension of the inverse of a time,
and it corresponds to the inverse of the average lifetime of an electron in a capture state.
It has to be noted that σn and en are not exactly probabilities (they should bd dimensionless and
bounded between 0 and 1) but they rather describe the chance of occurrence of the respective
phenomena.

Equilibrium

The cross-section of capture and the constant of emission are one each other related, and their
relationship defines the effect of the capture state on the population of charge carriers. In steady
state condition, the mean densities of electrons and holes are constant, then the rates of capture
and emission are the same: r1 = r2.

1

4
vthn · σn ·NT (1− fFD(ET )) = NT fFD(ET ) · en (4.10)

from which en is calculated:
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en =
1

4
vthn · σn ·

(
1

fFD(ET )
− 1

)
(4.11)

Since the capture state is in the band gap, the Boltzmann approximation of the Fermi-Dirac
function is not valid and the complete form of the Fermi-Dirac function has to be used. This leads
to:

en =
1

4
vthn · σn · exp

(
ET − EF

kT

)
(4.12)

The constant of emission depends on the distance between the energy level of the defect state
and the Fermi level.
Replacing the Fermi level with: EF = Ei +EF −Ei (where Ei is the intrinsic Fermi level) and the
density of electrons with n = niexp(

EF−Ei

kT ), we obtain:

en =
1

4
vth · σn · ni · exp

(
ET − Ei
kT

)
(4.13)

Namely, the emission does not depend on the Fermi level, but rather it depends on the energy
of the defect with respect to the intrinsic Fermi level namely with respect to the centre of the band
gap.
Similar results are obtained for the rates of the processes involving the holes.

r3 =
1

4
vthp · σp ·NT fFD(ET ) (4.14)

r4 = NT (1− fFD(ET )) · ep (4.15)

The equilibrium condition (r3 = r4) leads to the expression of the constant of emission of holes:

ep =
1

4
vth · σp · ni · exp

(
Ei − ET
kT

)
(4.16)

In conclusion, the chance of emission of electrons increases as the level of the defect is close to
the conduction band, and the chance of emission of holes increases as the level of the defect is close
to the valence band.
As a consequence, the same capture state if not located at the centre of the band gap behaves
differently respect to electrons and holes.

4.3.2 Traps and recombination centers

Although the probability of capture of electrons and holes may be equal, their emission rates are
different because they depend on the position of the capture state with respect to the intrinsic
Fermi level. Of course, electrons and holes are re-emitted with the same rate only when ET = Ei.
At the equilibrium the concentration of electrons and holes are stationary, this condition is achieved
when: r1 = r2 and r3 = r4.
Let us suppose that, for some reason, the concentration of holes suddenly increases. Then the rate of
capture of holes (r3) increases. As a consequence, the rate of emission of holes (r4) should increase.
However, the capture of holes affects also the rate of capture of electrons. Indeed, an increase of
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holes in the defect states means an increase of empty states and then an increase of the rate of
capture of electrons (r1). The processes r3 and r1 are exclusive, thus the consequence of the capture
of a hole is either the capture of an electron or the release of a hole. Which of them prevails depend
on the magnitude of the related rates and there are two extreme situations: r1 � r4 and r4 � r1.
In the first case, at the end of the process the number of electrons in the capture states does not
change, the hole in excess is eliminated, and one electron disappears from the conductance band.
In the second case, at the end of the process the number of electrons in the capture states does not
change, the excess hole is only temporarily removed and released back to the valence band, while
the electrons in conductance band are not affected by the process.
Then, if r1 � r4 the excess hole is removed by one electron of the conductance band and such a
state is called a recombination center. If r4 � r1 the excess hole is captured and re-emitted after a
delay time, and such a state is called a trap.
In other words, traps respond to the variation of the concentration of holes restoring the pristine
value, while in case of recombination centers the concentration of holes is still restored to the
equilibrium value but the concentration of electrons decreases.
In order to behave as a trap the probability of emission of a hole has to be larger than the probability
of capture of an electron. en depends on the distance between the energy of the defect state from the
intrinsic Fermi level. The largest rate of emission of holes is exhibited by those states whose energy
is close to the top of the valence band, and, symmetrically, the states more close to the conduction
band have the largest probability to emit electrons. These conditions are fulfilled by the acceptor
and donor states. Thus, it can be concluded that dopant atoms are traps while recombination
centers correspond to different kinds of impurities and defects.

The effect of traps and recombination centers to the current

The presence of traps or recombination centers affects the charge transport. To illustrate the effect
of recombination centers, let us consider the case of a volume of a semiconductor populated by a
density of recombination centers and that these centers are filled with electrons. When the current
of holes is injected, the holes in exces are recombined (they disappear) but also the concentration of
electrons decreases. As a consequence, a steady current cannot exist unless the disappeared electrons
are supplied by the adjacent portion of material. If this process is possible, the current of holes is
transformed into a current of electrons flowing in the opposite direction. Since the charges have
different sign, a net current is observed.
Figure 4 shows the role of recombination centers in the continuity equation.

The case of traps is shown in figure 4.5. In this case the current of holes is not modified. In
practice the traps extend the transit time of the holes in the volume, then traps participate to the
definition of the mobility. Since donors and acceptors are traps, this is consistent with the fact that
the mobility decreases with the increase of doping.
The defects resulting in electronic states inside the band gap are important elements of the semi-
conductors. They have two extreme effects on the mobile charges concentrations: traps and recom-
bination centers.
Traps affects the transit time of charges in the volume, then traps are an important constituents
of the mobility of the material. On the other hand, the effect of the recombination center is com-
pletely different. Recombination centers remove the excess of one type of charges consuming the
concentration of the other charge carriers. If the decreased charges can be replaced by an external
source (typically a ohmic contact) the recombination centers transform the current of one charge
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Fig. 4.3. The reaction of trap and recombination centre reaction to an excess of holes. The black dot in the
capture state indicates an electron while the white dot indicates a hole.

carrier into the current of the other charge carrier.
This mechanism of charge transport is fundamental for instance in PN junctions where the current
injected from one side of the junction to the other is formed by only one of the two charge carriers.
For this reason it is important to define an analytical tool allowing to treat the recombination and
generation phenomena in a semiconductor.

4.4 The Shockley-Hall-Read model of recombination

In doped semiconductors, the processes of generation and recombination can be easily modelled.
As noted in the above section, the energy level of the recombination centers is distant from the
conduction and the valence bands. Thus, in a N-type semiconductor, the energy level of the recom-
bination centers likely lie below the Fermi level. And oppositely, in case of P-type semiconductors
it lies above the Fermi level. As a consequence, In a N-type semiconductor, at such a level, fFD ≈ 1
and in a P-type semiconductor 1 − fFD ≈ 1. Thus, the centers of recombination are always filled
with majority charges.
In a N-type semiconductor, the equilibrium conditions (r1 � r3 and r2 � r4 and r1 = r2 and
r3 = r4) are simultaneously fulfilled even if the holes are few, and their capture is a rare event.
In such a condition, any increase of concentration of holes elicits a large increase of r3 while to
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n

p+1

n-1

pJp

Jn

steady-state case

holes :
∂p

∂t
= 0 → Rp = 1;Gp = 0 → ∂Jp

∂t
= −q

electrons :
∂n

∂t
= 0 → Rn = 1;Gn = 0 → ∂Jp

∂t
= +q

Fig. 4.4. The continuity equations (eq. 4.3 and 4.4) describe the effect of the recombination centers on a
current of holes injected in the volume. The current of holes has a negative gradient then it decays in the
volume while a current of electrons has a positive gradient then it grows in the volume as the holes disappear.

n

p+1Jp

n

p+1 Jp

steady-state case

holes :
∂np

∂t
= 0 → RP = 1;Gp = 1 → ∂Jp

∂t
= 0

Fig. 4.5. The effect of traps on current of holes injected in the volume can be appraised by means of the
continuity equation. The current of holes has a null gradient then it does not change across the volume.
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maintain the equilibrium only a modest, practically negligible, change of r1 is required. Eventually,
the material is ready to recombine any change of the minority charges.
An additional argument can be obtained considering the condition for which a capture state behave
as a trap or as a recombination center for a hole. It has been seen in the previous section that a
trap occurs when r4 � r1, let us evaluate than the ratio between the two rates:

r4
r1

=
NT (1− fFD(ET )) · ep

1
4vthn · σn ·NT (1− fFD(ET ))]

=
1
4vth · σp · ni · exp(Ei−ET

kT )
1
4vthn · σn ·NT (1− fFD(ET ))]

(4.17)

If the semiconductor is doped, n = ND and the holes are the minority charges. When σn = σp
(this condition will be discussed again below) The ratio between the ratio of holes emission and
electrons capture is:

r4
r1

=
ni · exp(Ei−ET

kT )

ND
(4.18)

Then the position of the energy level of the capture state with respect to the intrinsic Fermi
level is:

Ei − ET = kT · ln
(
r4
r1

nD
Ni

)
(4.19)

If ND = 1016 cm−3 in order to have r4 > 10 · r1 Ei−ET > 478 meV . In silicon, this means that
only those states whose energy is less than 80 meV above the valence band behave as traps of holes.
This is a negligible portion of the band gap, then all the states in the band gap are recombination
centers for the holes. Of course the same argument holds for electrons in a P type material. Then we
can conclude that, in practice, the totality of the states in the band gap are recombination centers
for the minority charges.
The difference between the rates of recombination and generation is the generation-recombination
function (U).

U = R−G = r1 − r2 = r3 − r4 (4.20)

U can be calculated from the definition of the four rates (eq. 4.7 and 4.8) and the chance of
emission (eq. 4.11 and 4.12). The calculation introduces the following relevant quantities:

τn0 =
1

Ntvthσn
; τp0 =

1

Ntvthσp
(4.21)

These are the times of recombination for electrons and holes. These quantities define the typical
time scale of capture of the excess charges. They depend on the temperature (vth), the cross-section
of capture , and the concentration of the recombination centers.
The calculation results in the recombination function U (a detailed description of the calculus is
shown in the appendix to this chapter):

U =
np− n2i

τn0[p+ niexp(
Ei−ET

kT )] + τp0[n+ niexp(
ET−Ei

kT )]
(4.22)

The numerator of U is different from zero if np 6= n2i namely when the material is in non equi-
librium. The function U reacts to a non equilibrium condition and the denominator expresses the
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magnitude of the reaction.
The capture of an electron corresponds to the fact that a wandering electron is bonded to a previ-
ously empty orbital of the impurity atom, while the capture of a hole is the transfer of an electron
previously bond to a orbital of the impurity to a nearby silicon atom. Since the recombination event
always involve a pair of electrons and holes, the probability of the processes are rather similar, so
we can assume σn = σp = σ and th τn0 = τp0 = τ0. From eq. 4.20, considering typical defects
density around 10−15 cm−3 and a cross-section for electrons and holes capture σ = 10−15 cm2 we
can calculate that τ0 ≈ 100 ns.
The recombination function can then be simplified as

U =
np− n2i

τ0[p+ n+ 2nicosh(ET−Ei

kT )]
(4.23)

Where the definition of hyperbolic cosine has been used (coshx = ex+e−x

2 ).
U gets its maximum value when the hyperbolic cosine is at the minimum, and this condition is met
when ET = Ei. This means that the maximum efficiency of the recombination is achieved when ET
is close to Ei, namely when the energy level of the recombination centers is around to the middle
of the band gap. As a consequence, in doped semiconductors the most efficient states are always
filled with majority charges.
Typical centers of recombination in silicon are atoms of gold and copper whose energy levels are
about 0.03 eV and 0.01 eV above the the intrinsic Fermi level respectively.
The function U describes the reaction of the semiconductor to non equilibrium situations: when
np > n2i → U > 0 the recombination prevails and on the other hand, when np < n2i → U < 0 and
the generation prevails.

4.4.1 Example of application of the SHR model: the dynamics of
generation-recombination phenomena

The generation-recombination function (GR function) of eq. 23 can be further simplified in some
particular cases. The most interesting and frequent of them is the low injection limit where the
density of excess charges is small with respect to the concentration of the majority charges. This
condition ensures that there is enough majority charges in the centers of recombination to recombine
any excess of minority charges.
In order to elucidate the use of the GR function let us consider two examples of symmetrical and
asymmetrical non equilibrium conditions.

Electron-hole pairs creation

Let us consider a semiconductor where the thermal equilibrium (n0p0 = n2i ) is altered by the
simultaneous creation of an excess of electrons and holes. This can be obtained for instance by
a flash of light whose wavelength is sufficiently small to create electron-hole pairs. Note that this
condition is met when the energy of the photons is greater than the energy gap (hcλ > Egap).
Let n’ and p’ be the instantaneous excesses of charges with respect to the equilibrium concentrations:
n0 and p0. Then the total concentrations of charges are: n = n0 + n′ and p = p0 + p′.
Let us calculate the fate of the electrons when the semiconductor is not biased and the charges are
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homogeneously created in the volume of the semiconductor. These conditions means that the drift
and the diffusion currents are both null (Jn = 0). Applying the continuity equation we find:

dn

dt
=
d(n0 + n′)

dt
=
dn′

dt
= G−R = −U = − np− n2i

τn0[p+ n+ nicosh(ET−Ei

kT )]
(4.24)

The numerator of the GR function can be written as:

np− n2i = (p′ + p0)(n′ + n0)− n0p0 = p′n′ + n′p0 + p′n0 (4.25)

Under the low injection limit, p′n′ is the negligible product of two small quantities. Low injection
limit also means that p’ and n’ are much smaller than p0 and n0 respectively. Furthermore, since
electron-hole pairs are simultaneously created and the recombination times of electrons and holes
are equal, we have p′ = n′ at any time.
U function can be further simplified considering that the most efficient centers of recombination
are located at ET = Ei, and then the hyperbolic cosine can be replaced by 1. This assumption is
supported by the fast growth of the hyperbolic cosine; as an example the function is ten times its
minimum value when the argument is about 3. Then the hyperbolic cosine contribution to the GR
function becomes negligible if ET − Ei > 3kT that is a very small quantity with respect to the
whole energy gap.
Hereafter, we can assume that all the effective centers of recombination lie at ET ≈ Ei and the
hyperbolic cosine is replaced by 1.
Then U function is:

U =
n′(p0 + n0)

τ0(p0 + n0 + 2ni)
(4.26)

If the semiconductor is N-type: p0 � n0 and ni � n0; on the contrary, if it is P-type: p0 � n0
and ni � p0. In both cases the GR function for the electrons can be written as:

U =
n′

τ0
(4.27)

Then, besides than on the density of excess charges, U function depends only on τ0 namely on
the inverse of the product between the density of the centers of recombination (NT ), the thermal
velocity (vth), and the intrinsic probability of capture (σ0).
The U function determines, through the continuity equation, the fate of the excess charges created
by the flash of light.

dn′

dt
= −U = −n

′

τ0
(4.28)

The equation can be integrated in dn’ from n′(0) and n′(t) and in dt from 0 to t. The result is:

ln

(
n′(t)
n′(o)

)
= − t

τ0
→ n′(t) = n′(o)exp

(
− t

τ0

)
(4.29)

The charges are completely eliminated after about four times the recombination time (τ0). After
this interval, another independent process of creation-recombination can take place. This time is
important for the response time of photoconductors.
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Fig. 4.6. The charges created at time t0 by a flash of light decay exponentially with a time scale tau0.

Non symmetrical charge injection

Let us consider now the case when only the density of one of the two charge carriers is altered.
The excess charge can be due by the injection of a hole or a electron current from a nearby volume
inside the material.
For this example let us consider an injection of holes in a N-type semiconductor. then n = n0 and
p = p0 + p′.
The same conditions about the doping of the material and the low injection limit still hold (p′ and
p0 � n0 and ni � n0). Furthermore, the centers of recombination are located around the band gap
center and then the hyperbolic cosine is replaced by 1. The generation-recombination function can
be simplified as in the previous case:

U =
p′

τ0
(4.30)

The same expression is also found in the case of excess electrons injected in a P-type semicon-
ductor. Finally, we have introduced a simple and compact version of the GR function that can be
used in the continuity equation for any deviation from equilibrium valid only when the low-injection
limit is fulfilled. This equation is an important tool to calculate the current in PN junction based
devices such as the PN diode and the Bipolar Junction Transistor.

4.4.2 The generation-recombination function for direct band gap materials

The GR function previously derived is valid when the processes of generation and recombination are
mediated by inter-gap states. This is the typical process occurring in non direct band gap materials
where the probability of direct transitions from the valence to the conductance band and vice versa
are low.
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On the other hand, in direct band gap semiconductors the band-to-band transition is highly prob-
able. Direct band gap means that the top of the valence band is aligned, in the k-space, with the
bottom of the conductance band. This is the case of the semiconductors of the III-V group of the
periodic table such as gallium arsenide (GaAs), indium phosphide (inP), or aluminum arsenide
(AlAs).
At thermal equilibrium, the recombination rate is simply proportional to the concentration of elec-
trons and holes: R = βn0p0. At the equilibrium, R = G, the generation rate can be defined as
G = βn0p0 where β is a constant of the phenomenon.
In case of a symmetrical excess of charges such as that described in section 4.1.1 the recombination
is increased but the generation remains fixed at the equilibrium value. then:
R = β(n0 + n′)(p0 + p′) and G = βn0p0 .
The generation-recombination function is:

U = R−G = β(n0 + n′)(p0 + p′)− βn0p0 (4.31)

If the low-injection limit is fulfilled, we have that n′p′ is negligible, then:

U = β(n0 + p0)n′ =
n′

τ0
(4.32)

The above equation holds in a N-type semiconductor where p0 is negligible. Then τo = (βn0)−1

is the the recombination time. An identical expression is obtained in case of a P-type material.
Under the low-injection limits the generation-recombination function in indirect and direct band
gap semiconductors are analytically identical. Note that the recombination time depends on the
number of recombination centers which are NT when the recombination is mediated by the inter-
gap centers, and n0 in the case of band-to-band recombination.
Eventually, when the low-injection limit is satisfied, the continuity equation can be solved indepen-
dently from the kind of semiconductor.

4.4.3 Appendix: the SHR generation-recombination function

The generation-recombination function can be calculated considering that at the equilibrium the
rate of generation and recombination of electrons and holes are equal and the both the conditions
defines the function U:

{
U = r1 − r2
U = r3 − r4

(4.33)

replacing eq. 4.7 and 4.8 in the first equation and eq. 4.13 and 4.14 in the second it becomes:

{
U = vthnNT (1− f)σn −NT fen
U = vthpNT fσp −NT (1− f)ep

(4.34)

Replace in both equations en and ep with eq. 4.11 and 4.15 respectively. The first equation gives:

U = vthnNT (1− f)σn −NT fexp
(
ET − Ei
kT

)
(4.35)

From which the Fermi-Dirac function is calculated
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f =
vthnNTσn − U

vthnNTσn(n+ niexp(
ET−Ei

kT ))
(4.36)

Introducing the time scale of electrons capture:

τn0 =
1

vthnNTσn
(4.37)

The eq. 4.35 is:

f =
n− Uτn0

n+ niexp(
ET−Ei

kT )
(4.38)

Repeat the same calculation for the second equation in eq. 4.33, introducing this time the time
scale of holes capture:

τp0 =
1

vthnNTσp
(4.39)

It leads to a second expression for the Fermi-Dirac function:

f =
Uτn0 + niexp(

Ei−ET

kT )

p+ niexp(
Ei−ET

kT )
(4.40)

The two expressions of the Fermi-Dirac function are obviously equal:

n− Uτn0
n+ niexp(

ET−Ei

kT )
=
Uτn0 + niexp(

Ei−ET

kT )

p+ niexp(
Ei−ET

kT )
(4.41)

From which the U function is easily calculated:

U =
np− n2i

τn0[p+ niexp(
Ei−ET

kT )] + τp0[n+ niexp(
ET−Ei

kT )]
(4.42)

Assuming that σn = σp also τn0 = τp0. Introducting τ0, the unique characteristic time of capture

of holes and electrons, and considering the definition of the hyperbolic cosine (coshx = ex−e−x

2 ) we
obtain the simplified version of the generation-recombination function:

U =
np− n2i

τn0[p+ n+ 2nicosh(ET−Ei

kT )]
(4.43)
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PN Junction

5.1 Introduction

The PN junction is one of the fundamental blocks of semiconductor devices, in particular it makes
diodes, bipolar junction transistors and a plethora of sensors, not least the photodetectors.

The ideal PN junction is a homogeneous piece of semiconductor characterized by an abrupt be-
havior of the dopant atoms: at x < 0 the material is P-type doped by a uniform distribution of
acceptors NA and at x > 0 it is N-type doped by a uniform distribution of donors ND. Obviously,
this is just a ideal approximation of real PN junctions. Actually, the distribution of dopant atoms is
not uniform and then the junctions are not sharp. Although the departures from reality, the ideal
model is surprisingly accurate to describe most of the electric properties of the junction.
PN junctions can be formed by any couple of P and N semiconductors. To this regard, the note-
worthy cases are the homojunctions formed by the same semiconductors, and the heterojunctions
formed by different semiconductors. In this chapter homojunctions are treated, while heterjunctions
are discussed in chapter 7. In terms of the band diagram, a homojunction is made by two materials
sharing the same affinity and band gap but with different work functions. Hereafter, the materi-
als properties are specified with suffixes p and n with the obvious meaning of P-type and N-type
respectively.

5.2 The PN junction at the equilibrium

The formation of the junction can be ideally thought as the instantaneous union of two separated
materials kept at thermal equilibrium. The process takes place at the same temperature, then the
joint material reaches the equilibrium following the same steps outlined in chapter 2 except that
this time both electrons and holes have to be considered. Then, electrons migrate from the material
with the smallest work function towards that with the largest work function; and vice versa for
the motion of holes. In other words, the electrons depart from the N-type material to migrate into
the P-type material and the holes are transferred from the P-type to the N-type. Charges transfer
proceeds until the Fermi level in the whole device becomes uniform.
The charges injected from one material to the other are minority charges in the destination regions.
Hence, they are quickly recombined by the majority charges. On the other hand, majority transfer
leaves their own material. Both these processes lead to the formation of a density of fixed charges
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made by the ionized dopant atoms. Eventually, a double layer of oppositely charged regions (positive
in the N-type side and negative in the P-type) is formed. The most immediate consequence of these
charges is an electric field that prevent any further transfer of charges and then establish the
equilibrium in the system. It is worth to remind once again that equilibrium means a balance
between opposite currents. The equilibrium band diagram is shown in figure 2.
At the equilibrium, the whole system is formed by two unperturbed bulk regions connected by a
space charge region (in particular a depletion layer). The total charge density in any volume is the
sum of the concentration of the four kinds of available charges: Q = q(p − n + ND − NA). The
charge densities in each zone are listed in Table 1.

e
n
e
rg
y

E0

Egap

qχs

Egap

qΦpqχs qΦn

Fig. 5.1. Band diagrams of the two constituents of a ideal PN junction.

Table 5.1. Charge condition in the three regions of the semiconductor.

region size holes density electrons density total charge density

P neutral zone x < −xp pp = NA np =
n2
i

NA
ρ = 0

N neutral zone x > xn pn =
n2
i

ND
np = ND ρ = 0

Space charge region −xp < x < xn p < NA n < ND ρ 6= 0

The electric field and the potential are calculated from the Poisson equation solved in the
space charge region where the total charge is different from zero. Also in this case the electrostatic
characteristics of the junction are calculated under the deep depletion hypothesis assuming that
the total charge in the depletion layer is only contributed by the donor and acceptor atoms. Then
the Poisson equation is:

d2φ

dx2
= − q

εs
(ND −NA) (5.1)
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e
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y

vacuum level

qφi = qφp − qφn

xn−xp 0 x

conductance band

valence band

Fermi level

Fig. 5.2. Band diagrams at the equilibrium.

The deep depletion hypothesis applied to the step junction results in the charge distribution
depicted in figure 3. The striking feature of this distribution is the sharp transition from the neu-
tral zone to the depletion layer. Let us remark again that this is a ideal representation of the real
distribution of charges, later a modification of the model will be introduced to remove at least the
abrupt transitions at the borders of the space charge region.

xn

−xp

ρ

+Q

-Q

Fig. 5.3. Distribution of total charges in the deep depletion approximation.

The amounts of charge in the two sides of the depletion layer are: +Q = +qNDxn and −Q =
−qNaxp. Since the total charge has to be null, the following relationship holds
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NDxn = NAxp (5.2)

Equation 5.2 shows that the extent of the depletion layer is inversely proportional to the doping.
Namely, the depletion layer extends more towards the less doped side of the junction. Obviously,
the two sides of the depletion layers are symmetrical only when the concentrations of the dopant
atoms are the same.
The distribution of charges shown in figure 3 is the input to calculate the electric field and the
potential.
The electric field is given by:

dE
dx

=
ρ

εs
(5.3)

in the N-type side of the depletion layer (0 < x < xn), under the hypothesis of constant doping,
the electric field is:

∫ E(xn)

E(x)
dE =

∫ xn

x

qND
εs

dx→ E(xn)− E(x) =
qND
εs

(xn − x) (5.4)

since the bulks of the semiconductors are neutral zones, the boundary condition is E(xn) = 0,
then the electric field in the N-type side of the depletion layer is:

En(x) =
qND
εs

(x− xn) (5.5)

Similarly, in the P-type part of the space charge region where:

∫ E(x)

E(−xp)

dE = −
∫ x

−xp

qNA
εs

dx→ E(x)− E(xp) = −qND
εs

(x+ xp) (5.6)

with the boundary condition E(−xp) = 0 the electric field in the P-type side is:

Ep(x) = −qNA
εs

(x+ xp) (5.7)

Since the material is homogeneous, the electric permittivity is a constant, and the electric field
is continuous at the interface (En(0) = Ep(0)) where it takes its absolute value is maximum:

Emax = −qNA
εs

xp = −qND
εs

xn (5.8)

It is worth to note that eq. 5.8 is similar to eq. 5.2 and it provides an alternative expression of
the null total charge condition.
The potential is calculated from the electric field (dφ = −Edx) in the two sides of the depletion
layer.
The boundary conditions for the calculation of the potential are: φ(x ≥ xn) = φn and φ(x ≤
−xp) = −φp. Where φn and −φp are the potentials in the neutral zone as defined by eq. 2.74 where
φ = EF − Ei.

x < 0→ φ(x) = −φp +
qNA
2εs

(x+ xp)
2 (5.9)
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x > 0→ φ(x) = φn −
qND
2εs

(x− xn)2 (5.10)

Note that the potential in x=0 is null only if the concentrations of acceptors and donors are
the same (NA = ND). The null potential occurs where the semiconductor becomes intrinsic (p =
n = ni). Noteworthy, in case of asymmetric doping, the potential becomes null inside the depletion
layer of the less doped semiconductor. Thus, in this side of the depletion layer, the region between
the condition where φ = 0 and the interface is populated by more minority charges than majority
charges. Such a situation is called inversion and it is a fundamental phenomenon in metal-oxide-
semiconductors junctions.
The net drop of potential across the whole junction is the built-in potential. It can be calculated from
the potentials in the unperturbed neutral zones, φbi = φn − φp, that depend on the concentration
of majority charges in the respective regions (see eqs. 2.73 and 2.74).

φn =
kT

q
ln

(
ND
ni

)
; φp = −kT

q
ln

(
NA
ni

)
; (5.11)

from which:

φi =
kT

q

[
ln

(
ND
ni

)
+ ln

(
NA
ni

)]
=
kT

q
ln

(
NAND
ni

)
(5.12)

xn−xp

E

xn

−xp

φ

φn

−φp

Fig. 5.4. Electric field and potential in a PN junction at the equilibrium.

As an example, if ND = NA = 1016cm−3 the built-in potential is about 0.72 V.
The total size of the depletion layer descends from the condition of continuity of the potential in
x=0.
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φn −
qND
2εs

x2n = φp +
qNA
2εs

x2p (5.13)

Then, introducing the built-in potential we obtain:

φi = φn − φp =
q

2εs
(NDx

2
n +NAx

2
p) (5.14)

Replacing xn with the expression derived from the charge neutrality condition (eq. 5.2): xn =
ND

NA
xp the depletion layer in the P region can be calculated:

xp =

√
2φiεs
q

ND√
NDN2

A +NAN2
D

(5.15)

Replacing xp the depth of the depletion layer in N region is found:

xn =

√
2φiεs
q

NA√
NDN2

A +NAN2
D

(5.16)

Eventually, the whole depletion layer is

xd = xn + xp =

√
2φiεs
q

(
1

NA
+

1

ND

)
(5.17)

5.2.1 Removal of the charge discontinuity at the depletion layer border

According to the hypothesis of deep-depletion, the concentration of the majority charges becomes
abruptly negligible at the borders of the depletion layer. The relationship between charges density
and potential is ruled by the Boltzmann expression, then even a small bending might result in a large
change of electrons (and holes) concentration. This makes plausible the deep depletion hypothesis
inside the depletion layer, but around the border of the depletion layer a smooth transition has to
exist. Figure 5 shows a qualitatively more realistic behavior of mobile and total charges.
In this section a quantitatively expression of the behavior of the potential around the border of the
space charge region is evaluated. It is important to remark that this behavior is common to any
depletion layer disregarding the material where it takes place. In particular, the same conclusions
hold also for the metal-semiconductor junction described in chapter 2.
To calculate the behavior of the potential around the border of the depletion layer let us consider
the Poisson equation. The calculation is shown here for the N-type material, of course, on the other
side and absolutely symmetrical calculation can be carried out.
The total charge in the N-type material is contributed by donors and electrons. The concentration
of donors is constant (by hypothesis) and the concentration of the electrons depends, through the
Boltzmann equation, on the potential. Then the Poisson equation can be written as:

d2φ

dx2
= − q

εs
(ND − n) = − q

εs

[
ND − niexp

(
qφ

kT

)]
(5.18)

At the border of the depletion layer the actual potential is smaller than φn, and it can be written
as: φ = φn− φ′. The deep depletion hypothesis results in φ = φn at x = xn. The smooth transition
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of the density of electrons from 0 to ND is represented by the potential φ′.
Replacing the potential in the Poisson equation we get:

d2(φn − φ′)
dx2

= − q

εs

[
ND − niexp

(
qφn
kT

)
exp

(
−qφ

′

kT

)]
(5.19)

−xp

xn

Q
mobile

−xp
xn

Q
total

Fig. 5.5. Qualitative behavior of mobile charge (electrons and holes) and total charge: mobile charges plus
acceptors and donors.

Considering that φn is constant and the first exponential defines the concentration of electrons
in the neutral zone (see eq. 5.11), namely the donor concentration we obtain:

−d
2φ′

dx2
= −qND

εs

[
1− exp

(
−qφ

′

kT

)]
(5.20)

Around xn, φ′ is a small perturbation, so the exponential can be replaced with its first order
approximation (e−x = 1− x).

−d2φ′
dx2

= −qND
εs

(
1− 1 +

qφ′

kT

)
= −q

2ND
εskT

φ′ (5.21)

The previous equation contains the Debye length defined as LD =
√

εskT
q2Nd

Then the Poisson equation can be written as:

d2φ′

dx2
=

φ′

L2
D

(5.22)
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whose solution is: φ′ = A exp( x
LD

) + B exp(− x
LD

). The constants A and B depends on the
boundary conditions. The first boundary conditions is φ′(0) = φ′0, which is the deviation with
respect to φn at x = xn. For sake of simplicity, the origin of the coordinate x is translated to x = xn.
For the second boundary condition let us consider that the length of the bulk is much greater than
the Debye Length. the the perturbative potential φ′(x) vanishes inside the semiconductor. The two
boundary conditions provides that A = 0 and B = φ′0. Eventually, the excess potential due to the
smooth behaviour of total charge is φ′ = φ′0 exp(− x

LD
).

The additive term for the electric field is then given by:

E ′ = −dφ
′

dx
=

φ′0
LD

exp

(
− x

LD

)
(5.23)

Even the electric field decays exponentially beyond xn and xp towards the bulk of the semicon-
ductor. The Debye length is the length scale of the exponential decay. In practice the electric field
becomes negligible at about four Debye lengths from the boundary of the depletion layer calculated
with the deep depletion approximation.
The Debye length depends on the permittivity and the doping. For silicon, in case of NA = ND =
1016cm−3 the Debye length is LD = 40 nm. This figure has to be compared with the corresponding
depletion layer width (eq. 5.17) is xd = 332nm.
The deep depletion approximation can be applied. However, outside the depletion layer the electric
field is small but non zero. Such a small field can be neglected in the description of electronic devices
but it is of great importance in case of light detectors such as photodiodes and solar cells.
Both the depletion layer size and the Debye length depends on the doping concentration, it may be
of interest to determine the relationship between these two quantities.
For this scope let us consider a symmetric diode (ND = NA) where the potential at the origin is
null. Then φ0 = φn − qND

2εs
x2n = 0. Replacing the expression for φn we obtain:

x2n = 2
εskT

q2ND
ln

(
ND
ni

)
= 2L2

Dln

(
ND
ni

)
(5.24)

Then the ratio between the depletion layer size and the Debye length is:

xn
LD

=

√
2ln

(
ND
ni

)
(5.25)

The ratio between the depletion layer size and the Debye length is rather independent from the
doping concentration. At ND = 1016cm−3 the ratio is 5.25, if ND is 100 times larger it becomes
only 6.06.

5.2.2 Actual configurations

Figure 5.6 shows the simplified sketch of a planar PN junction. The actual area of the device is
defined by the density of the field lines connecting the two terminals. As a first approximation the
device can be restricted to the separation surface parallel to the surface of the semiconductor.
The device can be fabricated from a P-type semiconductor, through a suitable lithographic step
where a circular area is defined at the surface from which N-dopant atoms are diffused. Most used
methods for doping are ion implantation and gaseous deposition. In the first case, dopant atoms are
ionized and accelerated towards the semiconductor surface, in the second case the dopant atoms
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Fig. 5.6. Schematic arrangement of a planar PN junction diode. To preserve symmetry, metal contacts are
ring shaped, the current flows from the junction towards the lateral contact.

are vaporized in gas phase and absorbed by the semiconductor through a solubility process.
Diffusion enables the doping atoms to cover a relevant volume of the semiconductor. Either im-
planted or absorbed atoms are let diffuse under controlled temperature. At low concentrations, the
dopant profile is properly described by the diffusion current and the continuity equation. These are
the first and the second Fick’s laws.

J = −D∂C(x, t)

∂x
;

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(5.26)

The solution of the equations depends on the boundary conditions. In case of ion implantation,
the amount of atoms is limited and as the dopants penetrate the material the concentration at
surface decreases. The dopant profile has an exponential behavior. In case of absorbed atoms, the
concentration at surface is maintained constant by the atoms in gas phase, and the concentration
inside the material evolve as the complementary error function (erfc) which is defined as: erfc =
2√
π

∫∞
x
e−t

2

dt. In both cases, the implantation of donors in the P-type material results in a non

constant profile, the junction occurs where the added dopant concentration becomes smaller than
the background dopant concentration. Figure 5.6 shows an example of the dopant concentration
profile in case of doping from gas phase.

The behaviour around the junction of the doping atoms can be approximated by a liner function.
Note that the assumption of a linear behavior of the charges in the depletioin layer changes the
exponent of the dependence of the electric field and the potential from the distance. In particular, the
electric field becomes dependent on the square of the distance and the potential on the third power.
Qualitatively, this introduces only a small perturbation to the electrostatic quantities calculated
with the hypothesis of a constant donor concentration in each zone.

5.3 The current in the PN junction

In order to calculate the current to voltage relationship of a PN junction let us consider the ideal
device sketched in figure 7. The device is made by A space charge region and two neutral regions
in the P and N type sides. A ohmic contact is provided at each end of the device. The contact is
provided through a heavily doped layer. The ideal diode is mono dimensional and instead of the
current the current density J is calculated, so the measurable current is I = JA where A is the
cross-sectional area of the device.

The voltage VA is applied between the electrode of the P-type material and the electrode of the
N-type material. For sake of simplicity, the N-type material is grounded. As discussed in chapter
2, the applied voltage is almost completely found across the depletion layer. This is a fundamental
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Fig. 5.7. Example of solution of the diffusion equations in case of gaseous deposition. The example shows
the diffusion of Boron atoms in a silicon wafer doped with 1016 cm−3 donors.The process occurs at 1100 ◦

C at this temperature the diffusion constant of boron is D = 2.96 · 20−13 cm2/s. The concentration of boron
atoms at the surface is C0 = 1019 cm3. The solution of the diffusion equation is C(x, t) = C0ėrfc(

x
2sqrtDt

where t is the time. The curves are calculated at t=2 hours, 1 hour and 20 minutes. The junction point,
where the doping character of the material switches from N to P, occurs at a distance in the range 1− 2µm
approximately.
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0 xn Wn-Wp -xp
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Fig. 5.8. Ideal sketch a PN junction. The device is biased through two ohmic contacts and a voltage VA is
applied to the device. For sake of simplicity, the N type material is grounded. The interface between the two
materials is the origin of the coordinate x along which the current flows.
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assumption to study the current in the device, as a consequence the electric field in the neutral
zones of the device is null, then no drift current can take place in the bulk of the two pieces of
semiconductor.

e
n
e
rg
y

qφi

Fermi level

qφi − qVA

Fig. 5.9. Band diagram change due to the voltage VA applied according to the condition in figure 6. The
Fermi level is no more uniform due the non equilibrium condition. The Fermi level in the two neutral zones
is different due to the different electric potential of the charges.

The energy of the electrons in the P-type semiconductor is shifted by a quantity −qVA, while
the energy of the electrons in the N-type semiconductor remains unchanged. The built-in potential
becomes qφi = q(φi − VA) and all the quantities depending on the built-in potential changes as a
consequence. For instance, the depletion layer size is changed into:

xd = xn + xp =

√
2(φi − VA)εs

q

(
1

NA
+

1

ND

)
(5.27)

The built-in potential (φi) keeps the whole system in equilibrium where the total current across
each section of the device is zero. In the equilibrium condition, the concentrations of majority and
minority charges in the neutral zones are ruled by the mass action law.
The changes of the built-in potential barrier depend on the sign of the applied voltage. The condition
VA > 0 is called forward bias. This corresponds to the case when the potential barriers are lowered.
The change of the potential makes no more valid the mass action law. The lowering of barrier
increases the concentration of the minority charges in both the neutral zones. Indeed, the built-in
potential prevents the majority charges to diffuse in the other region where their concentration is
much smaller.
Then, with respect to the equilibrium condition, there will be an excess of minority charges in the
neutral zones
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np →
n2i
NA

+ n′ ; pn →
n2i
ND

+ p′ (5.28)

where np is the concentration of electrons in the P-type materials, and pn is the correspondent
concentration of holes.
This excess of charges is responsible of the current. However, charges collection at the electrodes is
not straightforward because there is no electric field in the regions between the depletion layer and
the electrodes. Rather, the current is driven by the recombination phenomena.
With the opposite bias (VA < 0), in a condition called reverse bias, the potential barrier is increased
favouring the transfer of the minority charges from one material to the other. Due to the different
numerosity of majority and minority charges, it is clear that the two currents are quantitatively
different. This difference leads to the rectifier character of the PN junction.
In definitive, under direct bias the large population of majority charges are transferred to the other
region where they give place to an excess of minority charges that are recombined according to
the Shockley-Hall-Read (SHR) recombination law. While, under reverse bias the small population
of minority charges are transferred to the other region to produce a almost negligible increase of
majority charges. Eventually, the properties of the PN junction depends on the fate of the minority
charges.
The total current in the device, is made by two main contributions. The dominant component is
the current due to the increase of minority charges in the neutral zone, the second additional term,
which is dominant in reverse bias, is due to the processes of generation and recombination in the
space charge region.
The first contribution to the current is the ideal current of the diode.

5.3.1 Ideal current

The ideal current is the consequence of the changes of the concentration of the minority charges
at the border of the neutral zones. The following calculation is based on the quasi-equilibrium
condition, which states that even under bias, the concentration of electrons and holes can still be
calculated using the equations of the statistical equilibrium but replacing the built-in potential with
the actual barrier.
Another important condition to calculate the ideal current is the low-injection limit. This condition
allows to consider the simplified version of the generation-recombination function (eq. 3.26 and 3.28
of chapter 3).
The ideal current stems from the modulation of the concentration of electrons and holes at the
border between the depletion layer and the two neutral zones.
At the equilibrium (VA = 0) the majority charges at the coordinates xn and −xp are:

nn0(xn) = ND; pp0(−xp) = NA; (5.29)

and the corresponding minority charges are:

np0(−xp) = nn0(xn) exp

(
−qφi
kT

)
= ND exp

(
−qφi
kT

)
=

n2i
NA

(5.30)

and

pn0(xn) = pp0(−xp)exp
(
−qφi
kT

)
= NAexp

(
−qφi
kT

)
=

n2i
ND

(5.31)
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The subscripts p and n indicate the sides of the junction while the subscript 0 indicates the
equilibrium .
Under bias (VA 6= 0) the concentration of the minority charges at the borders of the neutral zone
is altered into:

np(−xp) = ND exp

(
−q(φi − VA)

kT

)
>

n2i
NA

(5.32)

and

pn(xn) = NA exp

(
−q(φi − VA)

kT

)
>

n2i
ND

(5.33)

The primary consequence of the applied voltage is the creation of an excess of minority charges
at the borders of the neutral zones. The concentration of minority charges is kept constant by the
applied voltage, then even if these charges are removed by recombination their concentration at xn
and −xp remains constant.
The concentration of excess charges can be written as:

n′p(−xp) = np−np0 = ND exp

(
−q(φi − VA)

kT

)
−ND exp

(
−qφi
kT

)
= ND exp

(
−qφi
kT

)
[exp

(
qVA
kT

)
−1]

(5.34)
and

p′n(xn) = np−np0 = NA exp

(
−q(φi − VA)

kT

)
−NA exp

(
−qφi
kT

)
= NA exp

(
−qφi
kT

)
[exp

(
qVA
kT

)
−1]

(5.35)
At the equilibrium, the density of the minority charges is about 11 orders of magnitude smaller

than the density of majority charges. Thus, until the excess charges do not reach this level the
low-injection condition is fulfilled.
The excess of minority charges (electrons in the P-type material and holes in the N-type material)
are created at the border of the neutral zones where the electric field is null. Then, the current
is collected at the electrode is a diffusion current, this means that in order to measure a constant
current a constant gradient of minority charges has to be established in the neutral zones.
The relevant phenomena responsible for the current is the recombination, in the two regions. The
excess of minority charges activates the recombination processes that tend to restore the equilibrium.
Under the low-injection limit hypothesis, the generation-recombination function can be written in
a simplified form and the U function in the two sides of the junction is:

Un = (R−G)n =
n′p
τn

; Up = (R−G)p =
p′n
τp

; (5.36)

Let us do the calculation of the current due to the holes injected in the N-type material. The
calculus are symmetrical for the electrons in the other side of the device.
To calculate the effect of the recombination, let us consider the continuity equation for holes.

∂pn
∂t

= −1

q

∂Jp
∂x
− U (5.37)

Since the electric field is null, the current is a diffusion current: Jp = −qDp
∂pn
∂x . The concentra-

tion of holes is pn = p′n + pn0. The doping is uniform, namely pn0 is uniform in time and in space.
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Replacing the recombination function, the diffusion current and the total holes concentration in the
continuity equation we obtain:

∂p′n
∂t

= Dp
∂2p′n
∂x2

− p′n
τp

(5.38)

Let us restrict our analysis to the steady state, namely to the d.c. current. Some considerations
about the transient phonemena are given at the end of this chapter. A steady current means that
∂p′n
∂t = 0, and the continuity equation for the holes injected in the N-type region is:

∂2p′n
∂x2

=
p′n
L2
p

(5.39)

The quantity Lp =
√
Dpτp is called the recombination length. It is a measure of the penetration

depth of the holes inside the N-type semiconductor.
The solution of the continuity equation is a linear combination of two exponential functions:

p′n(x) = A exp

(
x− xn√
Dpτp

)
+B exp

(
− x− xn√

Dpτp

)
(5.40)

That can be alternatively written in terms of hyperbolic functions:

p′n(x) = A∗sinh

(
x− xn
Lp

)
+B∗cosh

(
x− xn
Lp

)
(5.41)

Where A∗ = A−B
2 and B∗ = A+B

2 . The constants have to be calculated from the boundary con-
ditions. The steady-state profile of the concentration of holes is achieved by an equilibrium between
the diffusion of the holes from the space charge region towards the interior of the semiconductor
and the recombination that tends to eliminate the holes in excess with respect to the thermal
equilibrium, the whole process is ruled by the diffusion length. A short Lp is found in materials
characterized by an efficient recombination of holes. It is worth to remind that the recombination
time τp is inversely proportional to the density of recombination centres and their cross-section of
capture of holes (see eq. 17 of chapter 3), and Dp is proportional to the mobility and then inversely
proportional to the doping.
The holes distribution is the necessary ingredient to calculate the current. It is important to keep
in mind that the profile is steady in time but individual charges are continually injected from the
depletion layers and recombined by the recombination centers in the neutral zone.
The current can be directly calculated from the definition of the diffusion current and it is pro-
portional to the derivative of the profile of concentration of the excess holes. The profile of con-
centrations of excess charges can be calculated imposing the boundary conditions to equation 5.40.
The first boundary condition is the concentration of excess holes at xn, while the second boundary
condition is fixed by the position of the electrode. At the electrode indeed all the excess charges are
eliminated, then p′n(WB) = 0.
This means that:

p′n(x = xn)→ B∗ = p′n(xn) p′n(WB) = 0→ A∗ = − p′n(xn)

tanh(WB

Lp
)

(5.42)

Finally the distribution of excess holes is given by:
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p′n(x) = p′n(xn)

[
cosh

(
x− xn
Lp

)
−
sinh(x−xn

Lp
)

tanh(WB

Lp
)

]
(5.43)

the analytical behavior depends on the distance between the electrode and the depletion layer
with respect to the diffusion length. The function approximates an exponential as WB � Lp and
a linear function as WB � Lp. Figure 9 shows the behavior of the excess holes profile at different
WB/Lp ratios.
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Fig. 5.10. Decay of the excess holes in a N-type semiconductor calculated from equation 5.42 at different
WB/Lp ratios. Observe that as W � L the behavior tends to an exponential function and, on the other
hand, when W � L it tends to be linear.

As a consequence, also the current depends on the depth of the neutral zone defined by the
distance between the border of the depletion layer, from where the excess charges are injected, and
the electrode where the charges are collected by the external circuit. To this regard, it is convenient
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to discuss the two limit cases called long base diode, and short base diode where the solution of
the continuity equation is rather simplified. The nomenclature is clearly referred to the bipolar
transistor, since the PN junction is the fundamental block of this device.
In the following the current will be calculated in each of these extreme situations.

Long base diode

The condition of long base diode is met when the distance between the electrode and the depletion
layer is much larger than the diffusion length. According to the symbols in figure 5.6 the long
base diode corresponds to the following conditions: WB − xn � Lp in the N-type material and
−WE + xp � Ln in the P-type material. The two zones are independent, so it is possible to make
a diode where the bases are long and short respectively.
Since Lp is much shorter than the distance to be travelled to reach the electrode, all the excess
holes are recombined before to leave the semiconductor. This condition applied to eq. 39 results to
A=0 and the solution of the continuity equation is limited to the decreasing exponential function.
Then the constant B in eq. 39 is calculated from the other boundary condition: p′n(xn). Eventually,
the steady state profile of concentration of holes is:

p′n(x) = p′n(xn) exp

(
−x− xn

Lp

)
(5.44)

pn

pn0

p'n0

xn x

Lp

Fig. 5.11. Steady state distribution of the concentration of excess holes in the neutral region of the N-type
semiconductor. The excess charge p′n are summed over the constant equilibrium holes concentration (pn0.

Replacing p′n(xn) with its expression (from eq. 34) we have.

p′n(xn) = NA exp

(
−qφi
kT

) [
exp

(
qVA
kT

)
− 1

]
=

n2i
ND

[
exp

(
qVA
kT

)
− 1

]
(5.45)

namely:
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p′n(x) =
n2i
ND

[
exp

(
qVA
kT

)
− 1

]
exp

(
−x− xn

Lp

)
(5.46)

From this profile the diffusion current is calculated:

Jp(x) = −qDp
∂p′n
∂x

= q
Dp

Lp

n2i
ND

[
exp

(
qVA
kT

)
− 1

]
exp

(
−x− xn

Lp

)
(5.47)

Obviously the current of the excess holes is not constant in the space, but it follows the profile
of the density of the excess holes. In particular, as the holes travel inside the material their current
decreases, and it vanishes well before to reach the electrode. In this condition, no current should be
recorded in the external circuit, but it has to be considered the properties of the recombination.
Actually, the recombination of holes is achieved consuming the majority charges (electrons) so the
gradient of holes is complemented by a specular gradient of electrons. As a consequence there is a
complementary current of electrons originated from the electrode so that the sum of the currents
of electrons and holes is constant throughout the material: J = Jn + Jp. It is interesting to note
that the electrons necessary for the recombination are provided through the ohmic contact by the
external circuit that has the function of a ”electrons reservoir”.
Since their sum is constant, the two currents can be calculated everywhere between the depletion
layer and the electrode. The most convenient location for the calculus is xn where the current of
holes is maximum and the current of electrons is null.
The total current flowing in the N-type material due to the holes injected from the P-type side of
the junction is:

JN = Jp(xn) = q
Dp

Lp

n2i
ND

[
exp

(
qVA
kT

)
− 1

]
(5.48)

A similar calculus can be done for the electrons injected in the P-type material that give rise to
the current flowing in the P-type side of the junction.

JP = Jn(−xp) = q
Dn

Ln

n2i
NA

[
exp

(
qVA
kT

)
− 1

]
(5.49)

Finally, the total current is the sum of the two currents, note that only in the case of equal
doping the two currents have the same magnitude.

Jtot = JN + JP = qn2i

(
Dn

NALn
+

Dp

NDLp

)[
exp

(
qVA
kT

)
− 1

]
(5.50)

The majority charges transferred from one material to the other are also continuously provided
by the electrodes, so the total current is constant everywhere in the whole device.
In the ideal current only the current generated by the changes in the concentration of the minority
charges at the interface between the space charge region and the neutral zone is considered. Ad-
ditional phenomena occurring in the depletion layer are necessary to be taken into account for a
more complete picture.
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-xp xn0

J

Jtot

JP
JN

Fig. 5.12. Currents in a long base diode due to the change of minority charges at the border to the neutral
zones. Currents of holes are indicated in red, and blue indicates the currents of electrons. The current in
the depletion layer is dashed to indicate that additional processes occurring into the depletion layer have to
be considered for a complete picture of the currents across the PN junction.

Short base diode

The other geometric limit occurs when the distance between the electrode and the depletion layer is
shorter than the diffusion length. Namely: WB−xn � Lp in the N-type material and −WE +xp �
Ln in the P-type material. The solution can be directly derived from eq. 5.40 observing that the
short base diode corresponds to a small argument for the exponential functions. Then the solution
of the continuity equation can be linearized.
On the other end, the same solution can be obtained considering that in a short base diode the
recombination processes carried out by the recombination centers are negligible. Rather, all the
injected holes recombines at the ohmic contact. In practice, the excess holes only recombines with
the electrons of the metal contact, and the holes current entering at the surface of the contact is
compensated by an electron current flowing from the external circuit to the contact.
Under this assumption, Up ≈ 0 while the current is still the diffusion current (even when small the
semiconductor is a neutral zone):

∂p′n
∂t

= Dp
∂2p′n
∂x2

= 0 (5.51)

The above equation is settled to zero to indicate the steady state case. The general solution
of the previous equation is: p′n = A + Bx. Applying the boundary conditions: p′(xn) = p′n0 and
p′n(WB) = 0 the steady-state profile of holes is:

p′n = p′n0

(
1− x− xn

W ′B

)
=

n2i
ND

[
exp

(
qVA
kT

)
− 1

](
1− x− xn

W ′B

)
(5.52)

Where W ′B is the distance between the contact and the border of the depletion layer.
The linear profile of holes gives rise to a constant diffusion current whose expression is:
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xn x

W'B

WB

Fig. 5.13. Profile of holes in the N-type region under forward bias and in a short base diode.

Jp = qDp
n2i

NDW ′B

[
exp

(
qVA
kT

)
− 1

]
(5.53)

Since there is no recombination, the current is only contributed by the injected holes and there
is not a compensating electron current.
A similar behaviour can be calculated for the electrons injected in the P-type material so that the
total current is:

Jtot = JN + JP = qn2i

(
Dn

NAW ′E
+

Dp

NDW ′E

)[
exp

(
qVA
kT

)
− 1

]
(5.54)

Note that this equation is formally similar to the current in the long base diode, the only differ-
ence is in the typical length parameter involved in the equation. In the short base case the distances
between the ohmic contact and the depletion layer (W ′E and W ′B) replace the diffusion lengths (Ln
and Lp) of the long base diode.
The dependence of the depletion layer size from the applied voltage introduce a slight dependence
of the inverse current from VA. Another consequence of the short base diode is that since W ′E and
W ′B are smaller than Ln and Lp, respectively, the inverse current is larger in the short base diode.
In both the cases the inverse current is more contributed by the less doped material.
However, as it will be seen in the next section. the inverse current is actually dominated by the
processes of generation and recombination in the depletion layer.

Evaluation of the approximations

Before to continue to calculate the second contribution to the diode current, it is important to
discuss the extent of validity of the assumptions on which the ideal current has been calculated.
These assumptions are the quasi-equilibrium and the neutral zone.
The quasi-equilibrium condition requires that the applied voltage elicits a small perturbation with
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-xp xn0

J

Jtot

JP
JN

Fig. 5.14. Currents in a short base diode due to the change of minority charges at the border to the neutral
zones. Currents of holes are indicated in red, and blue indicates the currents of electrons. The current in
the depletion layer is dotted to mean that additional processes occurring into the depletion layer have to be
considered for a complete picture of the currents across the PN junction.

respect to the equilibrium condition so that it is still valid to continue to calculate the concentrations
of electrons and holes using the statistical laws. The neutral zone condition assumes that the voltage
drops in the bulks of the semiconductors are negligible.
Numerical examples can help to give reason of the two assumptions.
Let us consider a junction between two pieces of silicon whose doping concentrations are: ND =

NA = 1016cm−3. With such doping levels, the mobility of holes and electrons is: µn = 1200 cm
2

V s and

µp = 500 cm
2

V s . From the mobility, the diffusion constants at T=300K is calculated: Dn = 31.2 cm
2

s

and Dp = 13 cm
2

s . Let us consider τn = τp = τ0 and τ0 = 1/(NTσvth). Where NT is the density of the
recombination centers, σ is their cross-section and vth is the thermal velocity. WithNT = 1015 cm−3,
σ = 10−15 cm2 and vth = 107 cm/s the recombination time is τ0 = 10−7s. From the diffusion
constant and the recombination time we have: L =

√
Dτ which is: Ln ≈ 17µm and Lp ≈ 11µm. The

built-in potential and the depletion layer are calculated with the eq. 5.12 and eq. 5.17: φi = 0.71V
and xd ≈ 0.43µm.
At the equilibrium, the total current across the depletion layer is zero, however it is the result of the
algebraic sum of the drift and the diffusion currents. An estimation of the average diffusion current
of holes in the depletion layer is obtained considering the net change of concentrations across the
depletion layer:

Jp0 = −qDp
∆p

xd
(5.55)

where ∆p = 1016 − 104cm−3, the the diffusion current of holes is of the order of Jp0 ≈ 482 A
cm2 .

Under forwards bias, applying the formula of the ideal current with VA = 0.6V we find that the
forward current is Jtot = 0.65 A

cm2 . Namely, the forward current is more than one hundred times
smaller than the currents kept in balance by the thermal equilibrium. Thus forward bias introduces
only a small perturbation to the equilibrium state, and then the quasi-equilibrium condition is
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plausible.
To verify the neutral zone assumption, it is necessary to calculate the voltage drop in the bulk
of the semiconductor. The resistivity are calculated from the mobility and the doping densities
(ρN = 1/qNDµn and ρP = 1/qNAµp ): ρN ≈ 0.51Ωcm and ρP ≈ 1.25Ωcm. To calculate the actual
resistance it is necessary to introduce the dimensions of the device. In the case of a long base diode
(namely, the worse condition where the resistance is larger) we can assume W = 100µm larger
enough to extinguish the recombination processes. As the area let us consider A = 10−5cm2.
Then the resistances are: RN = 520Ω and RP = 1250Ω, and the current is I = JtotA = 3.3 ·10−5A.
Then the voltage drops are ∆VN = RNI = 0.0029V and ∆VP = RP I = 0.0070V . Less than 2% of
the applied voltage falls in the neutral zones, so more than 98% is found across the space charge
region.
Of course as the current increases the voltage drop in the neutral zone cannot be neglected. In this
case the actual voltage across the space charge region is VA −RI where R is the total resistance of
the two neutral zones. In this condition the voltage is simply: VA = RI + kT

q ln( II0 − 1).

5.3.2 Generation and recombination current

The current of the ideal diode depends only on the alteration of the concentration of minority charges
at the border of the depletion layer due to the applied bias. The ideal current model developed in
the previous section accounts for the behavior of the current in forward bias, however to complete
the picture it is necessary to take into consideration the processes occurring in the depletion layer.
Both in forward and reverse bias the depletion layer is altered because either majority (in forward
bias) and minority (in reverse bias) charges across the region altering the equilibrium. It is known
that anytime the equilibrium is altered the generation and recombination processes tend to restore
it, this holds also in the depletion layer and then the alteration induced by injected charges has
some consequence in the total current in the device. It is worth to remind that the density of the
recombination centre is constant throughout the material and it does not depend on the doping.
At the equilibrium (VA = 0) the concentration of holes and electrons is significantly smaller than
the corresponding doping (p � NA and n � ND) but the mass action law is valid (np = n2i ) and
then the recombination function is null.
Under bias (VA 6= 0) the concentration of charges change and then the recombination function is
no more zero. According to the sign of the applied voltage, the charges changes are different and
then the sign of the recombination function is different.
In case of forward bias, the depletion layer is narrowed and due to the injection of majority charges
the concentration of holes and electrons increases, as a consequence the recombination processes
prevails. On the other hand, in reverse bias, the size of the depletion layer increases and due to the
direction of the electron field the residual majority charges in the depletion layer are dragged away
from the region. The decrease of mobile charges elicits the generation phenomena.
In order to evaluate these phenomena, it is necessary to calculate the generation-recombination
function (U) in these two conditions. Since the concentration of holes and electrons in the depletion
layer is very small, the variation induced by bias is not a low-injection process, so the complete form
of the U function has to be considered (eq. 4.22 of chapter 4) still using the assumption that the
efficient recombination centers lie close to the intrinsic Fermi level, and than the hyperbolic cosine
is replaced by 1. Furthermore, let us continue to consider σn = σp, namely a unique recombination
time (τ0). So the U function is the same for both the sides of the space charge region.
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U = R−G =
np− n2i

τ0[p+ n+ 2ni]
(5.56)

Generation and recombination processes give rise to an additional current that is calculated
from the continuity equation.

∂n

∂t
=

1

q

∂JGR
∂x

− U (5.57)

In case of a steady current, all the derivatives with respect to time are null and then the current
is simply given by:

JGR = q

∫ xn

−xp

Udx (5.58)

To evaluate U, let us start to estimate the product np. This can be easily calculated at the
borders of the neutral zones where the charges concentrations are known.
At the border of the P-type zone at x = −xp it is:

n(−xp)p(−xp) = (np0 + n′p)pp0 =

[
n2i
NA

+
n2i
NA

[
exp

(
qVA
kT

)
− 1

]]
NA = n2i exp

(
qVA
kT

)
(5.59)

similarly at the border of the N-type:

n(xn)p(xn) = nn0(pn0 + p′n) =

[
n2i
ND

+
n2i
ND

[
exp(

qVA
kT

)
− 1]

]
ND = n2i exp

(
qVA
kT

)
(5.60)

The product np is the same at the two extremities of the depletion layer. It can take any value
inside the region but the concentrations of n and p in the depletion layer changes in the opposite
direction, thus it is plausible to assume that their product remains constant. Replacing np in the
recombination function we obtain:

U = R−G =
n2i [exp(

qVA

kT )− 1]

τ0[p+ n+ 2ni]
(5.61)

It is easy to see that, as previously anticipated, if VA > 0 then U > 0 and recombination
dominates, and if VA < 0 then U < 0 and the generation is the dominant phenomenon.
The function U can be further simplified considering the conditions when it takes its maximum
value. Since p and n appears at the denominator of the U function, the recombination and generation
phenomena are more efficient where the sum p+n takes its minimum value. At the same time, we
have just assumed that the product np is constant. The following two relations lead to calculate
the conditions that maximise the function U

d(p+ n)

dx
= 0 and

d(pn)

dx
= 0 (5.62)

Developing the derivatives we find:

dp

dx
+
dn

dx
= 0 and p

d(n)

dx
+ n

d(p)

dx
= 0 (5.63)
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From which we obtain that the recombination function is maximum where p = n. The behaviour
of p,n, and p+n in the depletion layer calculated at the equilibrium are shown in figure 5.14 in case
of a symmetrical doping. Under bias, p and n are modified shifting either upward or downward,
however their analytical behaviour is preserved.
In the following calculations, let us approximate the U function with its maximum value.
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Fig. 5.15. Charge carriers concentrations in the depletion layer in case of symmetrical doping of 1017 cm−3.
The charge distributions are calculated applying eq. 2.73 and 2.74 where the potential is the built-in potential
(eq. 5.9 and 5.10). The sum of electrons and holes get its minimum exactly when p=n. It can be shown that
this condition holds also if Na 6= ND.

The concentration of holes and electrons where U is maximum is: p = n =
√
pn = niexp(

qVA

2kT ).
Replacing all these conditions in the U function we have:

U =
n2i

(
exp( qVA

kT )− 1
)

τ0[p+ n+ 2ni]
=

n2i

(
exp( qVA

kT )− 1
)

τ02ni

(
exp( qVA

2kT ) + 1
) =

ni

(
exp( qVA

kT )− 1
)

2τ0

(
exp( qVA

2kT ) + 1
) (5.64)

Under forward bias, if VA � kt/q, exp( qVA

kT ) � −1 and exp( qVA

2kT ) � +1. Then, under forward
bias:

U =
ni
2τ0

exp(
qVA
2kT

) (5.65)
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Then, integrating from −xp to xn we have the GR current for forward bias (JFBGR ):

JFBGR =
qni
2τ0

xdexp

(
qVA
2kT

)
(5.66)

The calculations has been performed extending the maximum recombination rate to the whole
depletion layer, this leads to a slight overestimate of the actual GR current. However, the simplified
calculation correctly describes the exponential dependence from the applied voltage.
Under reverse bias, if VA � kt/q, exp( qVA

kT )� −1 and exp( qVA

2kT )� +1. Then, under reverse bias:

U = − ni
2τ0

(5.67)

Then the reverse bias GR current (JRBGR ) is by:

JRBGR = −qni
2τ0

xd (5.68)

It is worth to remind that xd depends on the root square of the applied voltage, then even if
not explicitly shown, the current still depends on the applied voltage.
Forward and reverse GR currents can be combined together to give the GR contribution to the
total current:

JGR =
qni
2τ0

xd

(
exp

(
qVA
2kT

)
− 1

)
(5.69)

Eventually, the total current in the diode is the sum of the ideal and the GR currents:

J = Jideal + JGR (5.70)

In practice, in order to take into consideration the two currents a non ideality term η is intro-
duced. The value of η is between 1 and 2. Then the current-voltage relationship is written as:

I = I0

(
exp

(
qVA
ηkT

)
− 1

)
(5.71)

Figure 13 shows a numerical example. It is related to a silicon PN junction made with ND =
NA = 1018cm−3. The device in this example is in the long base configuration, the recombination
lengths are 36 µm in the P-type material and 55 µm in the N-type side.
Since the diffusion current is proportional to n2i while the GR current is proportional to ni, the
relative magnitude of the GR current with respect to the ideal current depends on ni, which is a
function of the energy gap (see eq. 1.30). Then, in small band gap semiconductors such as germanium
ni is large, and the diffusion current dominates over the GR current, as a consequence the ideality
factor is close to 1.
Further deviations from the ideality occurs at large applied voltage when the low-injection condition
is no more fulfilled. A number of effects occurs under high injection. Among then it is worth to
mention that, as mentioned in the previous section, when the current is large the voltage drops in
the neutral zone are no more negligible, and this leads to a reduction of slope of the I-V relationship.
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Fig. 5.16. Numerical example of GR and ideal currents in a silicon PN diode. GR current dominates
in reverse bias regime and at small forward biases. In order to allow for a logarithmic representation the
currents are plotted as absolute values.

5.4 Capacitive effects

In chapter 2 the capacitance associated to the metal-semiconductor junction was discussed. In the
same way, also in the PN junction capacitance associated to the depletion layer is found. The value
of this capacitance can be calculated considering the relationship between the charge in the space
charge region and the applied voltage. The connection between these two quantities is contained in
the width of the depletion layer that depends on the applied voltage:

xd =

√
2εs
q

(
1

NA
+

1

ND

)
(φi − VA) (5.72)

Since the charge in the two regions is the same (Q =| qNAxp |=| qNDxn |), the capacitance can
be calculated considering either the P-type or the N-type side of the depletion layer.

C =
dQ

dVA
= qND

xn
dVA

= qNA
xp
dVA

(5.73)

Let us consider the N-type side. the relationship between the extension of the depletion layer in
one side and the total size of the depletion layer is:
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xp =
NA
ND

xn; xd = xn + xp; xn =
NA

ND +NA
xd (5.74)

Then:

C =
dQ

dVA
= q

NDNA
ND +NA

dxd
dVA

(5.75)

Calculating the derivative of xd and gathering under the square root all terms except εs we
obtain the same result of the junction capacitance (Cj) of the metal-semiconductor junction:

Cj =
εs
xd

(5.76)

It is worth to remind that, as for the other quantities, the above capacitance is a density of ca-
pacitance whose units are Farad/cm2. The actual capacitance of the device is obtained multiplying
the density of capacitance for the device area.
Such a capacitance is associated to any depletion layer wherever it occurs. In terms of the equivalent
circuit a solid-state device always contains resistances and capacitances.
It has to be noted that in forward bias, the depletion layer becomes smaller and the capacitance
tends to be large, as a consequence the associated impedance (Z = 1

jωC ) becomes negligible. On
the other hand, the capacitance becomes important under reverse bias.

Minority charges storage and the diffusion capacitance density

The peculiar current transport processes in the PN junction is manifested by an additional capac-
itance located in each neutral zone. This capacitance accounts for the charge accumulated in the
neutral zones and proportional to the current. Indeed, in order to achieve a steady current is neces-
sary to establish a constant profile of electrons (in the P-type side) and holes (in the N-type side).
It is known that charges do not accumulate instantaneously, then from a zero current situation to
a forward bias condition there is transit time that is necessary to accumulate the charge profiles.
The amount of charges is a function of the applied voltage, then there is a capacitance effect. The
time required to accumulate and to deplete these charges determines the response time of the PN
junction.
In order to calculated the stored charge let us consider the excess holes in the N-type region.

Qp = q

∫ W ′B

xn

p′n(x)dx (5.77)

In the case of a long base diode we have to replace the excess holes profile (eq. 42), the solu-
tion of the integral can be simplified applying the long base diode condition (WB − xn � Lp →
exp(−WB−xn

Lp
≈ 0. Then the amount of excess holes is:

Qp = q
n2i
ND

Lp

(
exp

(
qVA
ηkT

)
− 1

)
(5.78)

Replacing the holes current (eq. 45) we obtain a simple relationship between the excess charges
and the current:
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Qp = Jpτp (5.79)

In other words, the current is given by the steady stored amount of charge divided by the
recombination time. The in order to achieve the same current the necessary amount of excess
charge depends on the recombination time.
In the case of the short base diode, the excess charge profile is given by eq. 49 and the amount of
excess charges then is:

Qp = q
n2i
ND

(
exp

(
qVA
ηkT

)
− 1

)
WB − xn

2
(5.80)

Considering the current in the short base diode (eq. 50) we obtain the following expression for
the amount of stored charges

Qp = Jp
(WB − xn)2

2Dp
(5.81)

were τtr = (WB−xn)
2

2Dp
is the transit time of charges in the neutral zone, namely, it is the time

necessary to a charge to travel from the border of the depletion layer to the electrode in case of a
diffusion current resulting from a linear profile of excess charges.
This can be easily demonstrated applying the definition of electric current to the diffusion current
(qpdxdt = qDp

dp
dx ) and considering that for a stationary diffusion current a linear profile of charge is

necessary: p(x) = kx:

Dp
dp

dx
= p

dx

dt
→

∫ t

0

dt =
1

Dp

∫ L

0

p
dp
dx

dx→ t =
1

Dp

∫ L

0

kx

k
dx =

L2

2Dp
(5.82)

The total charge is proportional to the current and the proportionality term has the dimension
of a time. This is the recombination time in case of the long base diode and the transit time in
the case of the short base diode. A fast device requires less charge to be accumulated and this is
obtained with many efficiency recombination centres in a long diode or with a large doping in case
of the short diode.
Eventually, we can conclude that in both cases the charge is proportional to the time that the
charge spend in the neutral zone or before recombination or before to be collected by the contact.
Since this charge is modulated by the applied voltage it defines a capacitance, it is called diffusion
capacitance (Cd). It is worth to observe that since a steady diffusion current requires a steady
charge profile, the diffusion capacitance is necessary to the diffusion current. Then we can conclude
that a capacitance is associated to any semiconductor and that it is not possible to have a pure
resistive semiconductor material.
The diffusion capacitance is defined as Cd =

dQp

dVA
, and the charge can be written as Qp =

Qp0(exp( qVA

kT )− 1) where Qp0 is different in the cases of long or short diode.
Of course the same calculations applies to the electrons stored in the P-type side of the device.Then
the diffusion capacitance densities are:

Cpd =
q

kT
Qp0exp

(
qVA
kT

)
; Cnd =

q

kT
Qn0exp

(
qVA
kT

)
(5.83)

Corrado DI Natale 
Introduction to Electronic Devices: Part 2



DRAFT

120 5 PN Junction

Since the doping can be different, the two capacitances may also be different.
Diffusion capacitances are important in forward bias and, as mentioned before, they rule the re-
sponse time of the device. An equivalent circuit based on lumped elements can be derived considering
that the conductivity and the three capacitances depend on the same voltage (VA). Then the equiv-
alent circuit of the PN junction is formed by a resistor and three capacitors in parallel as in fig.
14.

VA G
Cj C

p
d C

n
d

I

Fig. 5.17. Equivalent circuit of the PN junction. The conductance G can be calculated from the I/V
relationship: G = dI

dVA
= q

kT
I0exp(

qVA
kT

).

The diffusion capacitances make evident the fact that the steady-state is reached only when
an amount of charge is steadily present in the neutral zones. The diffusion capacitance rules the
behaviour of the diode under forward bias. In particular the transitory times necessary to turn on
or turn off a diode depends on the diffusion capacitance. To illustrate these effects let us consider
a couple of examples related to the switch of a long-base diode.
In the first example, let us consider the circuit in figure 5.16 where a PN diode is biased by an
ideal current generator. The switch is turned on at t = 0. At t = 0− the diode is not biased, then
it is in the equilibrium condition with ID = 0. In order to fulfil the Kirchhof law, at t = 0+ the
current becomes immediately I0. In this condition, the voltage across the diode can be calculated
inverting the diode characteristics: VD = kT

q ln( IsI0 ). The former is valid when Is � Io namely under
forward bias. Actually, the previous value is the steady-state value of the voltage. Indeed, let us
recall that the ideal current of the diode has been calculated solving the continuity equation under
the steady-state assumption (dJdt = 0). The charge necessary for the current cannot be accumulated
instantaneously, then the voltage reaches a steady state value only after a certain time.
Apparently, it is not possible to obtain that the current is immediately equal to Is and the time of
charge accumulation. However, it has to be considered, that the current is not related to the amount
of charge but to the derivative of the charge profile, and in particular the derivative calculated at
the edge of the space charge region (xn and −xp). Then the total amount of charge can grow with
time according to the current/voltage relationship of the capacitance, but the maximum current
can be immediately achieved because it depends on the derivative. Figure 15b shows the progression
of charge profile, figure 15c an 15d the voltage and current across the diode respectively.

In order to discuss the effects when the diode is switched off let us consider the example in figure
16a. At t < 0 the switch T1 is off and the switch T2 is on. In this condition the diode is in forward
regime and let us suppose that the diode has been kept in this condition for a time sufficient to
establish the steady state. At t = 0 T1 is instantaneously switched on T2 off, then the diode is found
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Fig. 5.18. a: current source bias circuit; b: behaviour of the excess charges in the neutral zone. In figure
the holes in the N-type zone are shown. Different curves corresponds to the different times after the switch
is turned on. The gradient at xn is shown, note that that the gradient is constant over the time. As the
voltage across the diode increases, xn is shifted towards left this effect is not represented in figure; c: time
behaviour of the voltage across the diode; d: diode current vs time.

in reverse bias and this condition is kept for t > 0.
To switch off a diode means to deplete the neutral zones of the accumulated charges until no excess
charges are found in the bulk of the material. The excess charges profiles is due to two phenomena:
the injection of minority charges across the depletion layer and their recombination in the neutral
zone.
The voltage is applied only to the depletion layer, so when the voltage sign is changed the depletion
layer is immediately in reverse bias and then the majority charges of each regions are no more
transferred to the complementary zone. Furthermore, the circuit requires that the current flows in
the opposite direction with respect to the forward biased diode. The injection of charges in the
neutral zone suddenly stops and the amount of charges are the edge of the space charge region
decreases. On the other hand, the recombination requires time to consume the excess charges. The
decrease at the interface is faster than the recombination, then except for a small region close to
the interface the charges profile changes slowly. The decrease of charges at the interface gives rise
to an inversion of the gradient and then to the inversion of the current direction. As a consequence,
immediately after the switch the current changes sign and maintain a large value until the interface
is depleted of excess charges. After that, the recombination eliminates the charges in the bulk and
the forward current can decrease towards zero and the only circulating current is the inverse current
required by the reserve bias. Figure 16b shows the variable profile of excess charges while in figure
16c the behaviour of the current is shown.
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Fig. 5.19. a: Circuit used to discuss the transition from forward to direct bias. b: behaviour of the excess
charge after the transition from forward to reverse condition. Note that the depletion layer actually short
twords right. c: behaviour of the ideal current. Consider that this is superimposed to the reverse current that
is due to the generation phenomena in the space charge region.

5.5 Breakdown phenomena

The exponential relationship between the current and the voltage strongly limits the voltage drop
in a forward biased diode. In practice, in a silicon PN junction the forward voltage is considered
constant at around 0.7 V. Larger voltages results in a divergent value of the current that bring to
the thermal breakdown of the device. On the contrary, the reverse current is very small and only
weakly variable with the voltage, then the reverse voltage is virtually unlimited. However, since
the voltage drops in the narrow region of the depletion layer, the electric field in the space charge
region may become very large. This leads to non linear phenomena that are manifested as a sharp
increase of the reverse current. These phenomena are generally called breakdown and their origin
is due to two distinct causes: the avalanche effect and the Zener effect.
The avalanche effect is a classical phenomena and it happens when the electrons in the depletion are
accelerated to a kinetic energy that is sufficient to ionize the atoms to which the electrons impact.
The Zener effect is based on the quantum tunnel effect.
Both the effects take place around the interface between the P and N materials where the electric
field reaches its maximum value (see figure 4).

5.5.1 Avalanche effect

As previously mentioned, the avalanche effect can be efficiently explained in the frame of the classical
physics and it depends on the amount of kinetic energy that an electron acquires under the influence
of an electric field. This energy is given by:
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∆E = q

∫ l

0

Edx (5.84)

where l is the free mean path of the electron, namely the average distance travelled by an
electron between two consecutive impacts.
The energy necessary to ionize the impacted atom (Egap) can be roughly calculated considering a
free electron impacting with a velocity (v0) with a lattice atom and producing a electron-hole pair.
Let us assume that the three particles (two electrons and one hole) have the same mass, and after
the impact they have the same kinetic energy. The from conservation of energy and conservation
of momentum we have:

1

2
mv20 = Egap +

3

2
mv2f

mv0 = 3mvf

Then the threshold energy to ionize the impacted atom is ∆E = 1
2mv

2
0 = 3

2Egap. In spite of the
very simple model, this is a reasonable value of the expected ionization kinetic energy.
As shown in figure 5.18, the avalanche effect can take place is a restricted region around the inter-
face. The consequence of the ionisation, is that for each impacted electrons two electrons emerge
from the impact, these electrons can then be accelerated again to liberate other free electrons giving
rise to a sudden and large increase of the reverse current.
The free mean path is an essential quantity to activate the avalanche, indeed larger is the free mean
path lager is the energy acquired between two impacts and then more probable is the ionisation of
the impacted atom.
The free mean path is strictly related to the mobility and it decreases with the doping concentra-
tion. Then in heavily doped devices, the free mean path becomes short and in order to obtain the
avalanche is necessary a larger applied voltage. In silicon, when ND and NA are of the order of
1018cm−3 the electric field required for the avalanche is comparable with the saturation field and
the probability of the avalanche effect becomes small.

xn-xp

avalanche
region

avalanche
electric field

VA<0

Fig. 5.20. Behaviour of the electric field at the equilibrium and under reverse bias. The electric field
necessary to activate the avalanche is achieved in a region across the interface.
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5.5.2 Zener effect

The Zener effect is the other breakdown phenomena leading to an abrupt increase of the reverse
current. Its manifestation is similar to the avalanche effect but it is due to a typical quantum
phenomena: the tunnel effect.
The probability of tunnelling becomes relevant when the de Broglie wavelength of the electrons is
on the order of the potential barrier width. In heavily doped material (ND ≈ NA ≈ 1018cm−3)
the depletion layer is of the order of few nanometers. In these conditions, under reverse bias the
wavelength of electrons can become smaller enough to be comparable with that of the depletion
layer. As a consequence, the transfer of electrons from the valence band of the p-type material to the
conduction band of the N-type material becomes possible leading to a large increase of the reverse
current. The shape of the barrier is triangular and the probability of transmission of electrons across

the barrier is: T ≈ exp(
∫ l
0
∆E).

Then, the current depend exponentially on the applied voltage (VA) then the Zener effect results in
a large reverse current that can stabilise the value of the voltage drop across the diode. As shown
in figure 5.19, although the depletion layer is larger under reverse bias, the large shift of energy of
the electrons in the P-type material makes the barrier shorter favouring the tunnelling of electrons.
Furthermore, the electric field in the depletion layer accelerates the electrons increasing their energy
and then increasing the transmission probabilility.
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A
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E
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E
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x
d
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d

Eg

Fig. 5.21. Band diagram of a PN junction made by heavily doped semiconductors. At the equilibrium
(VA = 0) although the depletion layer may be narrow, a null density of states corresponds to the electrons
of the valence band. Under a large reverse bias, the density of states accessible to the valence band electrons
becomes large and a tunnel current of electrons can flow from the P-type to the N-type material. Due to the
large increase of energy in the valence band, in spite of the enlargement of the depletion layer the barrier
width becomes smaller than the equilibrium. In the inset, the shape of the triangular barrier is shown.
Electrons are accelerated in the depletion layer before to reach the barrier
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The breakdown phenomena are used to design devices that can stabilise the voltage across a
passive element. These devices are called Zener diodes even if both the avalanche and the Zener
might coexist. It is important to the note that the applied voltage is also fixed in a forward biased
diode, but the voltage drop in the forward bias is fixed at around 0.7 V (in case of silicon) while
the breakdown voltage in a Zener diode is of the order to Volts. This makes extremely more flexible
the use of Zener diode as voltage regulators in practical circuits.
Avalanche and Zener effects show a different behaviour with the temperature. In particular the
breakdown voltage at which the Zener effect takes place (BVzener) decreases with the temperature.
This can be attributed to the fact that the band gap (Egap) is slightly dependent on the temperature

(
∆Egap

∆T ≈ 0.3mVK ), then the barrier height becomes smaller as the temperature increases and a
smaller reverse bias is necessary to activate the breakdown.
On the other hand, the voltage necessary to ignite the avalanche effect (BVavalanche) increases
with the temperature. This can be understood considering that the mobility decreases with the
temperature then also the free mean path decreases. As a consequence, a larger reverse bias is
necessary to activate the avalanche.
In silicon devices with BV ≈ 5÷ 6V both the effects are possible, as a consequence, a stabilisation
of the breakdown voltage with respect to the temperature is observed.

5.6 Numerical example

Let us consider a PN junction formed by a P-type and N-type silicon equally doped with a concen-
tration of 1017 cm−3 of acceptors and donors respectively.
Figure 5.21 shows the band diagram at the equilibrium, since the concentration of dopants is the
same in both the sides of the junction the depletion layer is equally distributed.

Figure 5.22 shows the results of the Poisson equation in case of the deep depletion hypothesis.
The total width of the depletion layer is about 147 nm equally distributed between the two sides
of the junction. The maximum electric field at x = 0 is 5.68 · 104V/cm and the built-in potential is
0.83 V.

Figure 5.23 shows the effects of the applied voltage in terms of depletion layer size, current, and
capacitance. Ideal diode current and generation-recombination current are calculated and summed.
At VA > 0.5 V the ideal current dominates the total current of the device.
The total capacitance is calculated as the sum of the depletion layer capacitance and the diffusion
capacitances due to electrons and holes. At VA < 0.6 V , and in particular in reverse bias, the total
capacitance is dominated by the depletion layer contribution.

Figures 5.24, 5.25, and 5.26 shows the band diagram, the equilibrium electrostatic quantities,
and the I/V and C/V curves in case of a asymmetric PN junction where ND = 5 · 1017 cm−3 and
NA = 1016 cm−3. The asymmetric doping results in a asymmetric junction making the PN junction
rather close to the metal-semiconductor case.
It is important to observe that in the less doped region, p-type in this example, the intersection
between the intrinsic Fermi level and the Fermi level does not occur as the interface (as in the
equally doped diode) but inside the depletion layer of the p-type region. This means that there is a
region inside the depletion where the p-type material is characterized by a dominance of electrons.
This effect is called inversion and it is fully exploited in the metal-oxide-semiconductor devices. The
intrinsic condition occurs where the potential is null.
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Fig. 5.22. Equilibrium band diagram of a PN junction equally doped with 10−17 cm−3 dopant atoms.
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Fig. 5.23. Charge density, electric field and potential of a PN junction equally doped with 10−17 cm−3

dopant atoms.
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Fig. 5.24. Effects of the applied voltage in terms of depletion layer size, currents and capacitances of a PN
junction equally doped with 10−17 cm−3 dopant atoms.
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Fig. 5.25. Equilibrium band diagram of a PN junction asymmetrically doped with ND = 5 · 1017 cm−3 and
NA = 1016 cm−3.
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Fig. 5.26. Charge density, electric field and potential of a PN junction asymmetrically doped with ND =
5 · 1017 cm−3 and NA = 1016 cm−3.
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Fig. 5.27. Effects of the applied voltage in terms of depletion layer size, currents and capacitances of a PN
junction asymmetrically doped with ND = 5 · 1017 cm−3 and NA = 1016 cm−3.

Corrado DI Natale 
Introduction to Electronic Devices: Part 2




